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When a solidification front’is advancing into a region of supercooled liquid, its shape is 
subject to instabilities which can lead to complex modes of growth. The evaluation of the 
growth pattern is determined by the interaction of the driving force of the instability due to 
heat diffusion with the restabilizing force due to surface tension, and its full development is a 
highly nonlinear process. A new method for solving the two-phase heat diffusion problem 
under these conditions is described. The method is based on a single-domain treatment (weak 
formulation) of the moving boundary problem, with the temperature field near the interface 
approximated by a piecewise linear function in the spirit of the finite-element technique. 
Calculated results for a model problem are in excellent agreement with the predictions of an 
analytical approximation. 

I. INTRODUCTION 

Dendritic crystal growth is a long-known but poorly understood phenomenon 
which has begun to receive renewed attention from physicists [ 11. It has enormous 
practical importance in metallurgy, and it is also a fascinating example of the self- 
organizing of complex patterns within a simple physical system. While the essentials 
of the physics of solidification appear to be known, the process of pattern-generation 
presents challenges to understanding similar to those encountered in the study of 
hydrodynamic instabilities. The linear stability analysis of Mullens and Sekerka 
demonstrated that the patterns originate in an instability of the shape of the growing 
solid [ 21. Recent work by Langer and Miiller-Krumbhaar has included nonlinear 
effects, but only for small deviations from the steady-state shape of the interface [3]. 
Even in this regime a sophisticated combination of analytic and numerical techniques 
was required. The full development of the growth pattern is highly nonlinear, 
however, and methods are needed for the direct numerical solution of the 
solidification equations in the presence of the interface instability. This paper is, to 
my knowledge, the first report of such a method. 

The following model of solidification in a pure material is used. The system 
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consists of a finite two-dimensional region containing both solid and liquid. Heat 
transport in each phase is governed by a diffusion equation 

CL0 vu 
at i ’ 

where Di = D, or D, is the thermal diffusivity and U = T - T,,, is the difference of 
the absolute temperature T and the equilibrium melting temperature T,,, of the bulk. It 
is assumed that all the material parameters are independent of temperature, and that 
the densities of the solid and liquid are identical. Standard Dirichlet or Neumann 
conditions are imposed at the external boundaries. At points on the solid-liquid 
interface, conservation of heat requires that 

tv.i~=(Q,-Q,).ri, (2) 

where L is the latent heat of fusion, v the velocity, I? the unit normal to the interface, 
and QL and Qs the heat fluxes in the liquid and solid. The heat fluxes are 
Qi = -K,Vu, where K, is the thermal conductivity. The thermal diffusivities are 
related to Ki by Di = KJC,, where Ci is the heat capacity per unit volume. It 
assumed that the interface is in local thermodynamic equilibrium, so that movement 
of the interface is controlled by heat transport rather than by the kinetics of 
molecular attachment. In such conditions, the interface is rough on a molecular scale 
(crystalline facets do not form) and the temperature of a point on the interface obeys 
the Gibbs-Thomson relation 

u = -xx, (3) 

where r is a constant and X is the local curvature, taken to be positive if the 
interface is concave toward the solid. r is related to the surface tension y by 
r= yT,,JL. The effects of crystalline anisotropy are ignored, so that y is independent 
of direction. 

When the temperature of the liquid is greater than the equilibrium melting 
temperature, the interface is stable in the sense that small perturbations of its shape 
are damped out. As a result, the motion and shape of the interface conform to the 
geometry of the large-scale heat flow. In this case, Eq. (3) plays a very minor role. 
When the liquid is supercooled, however, it is possible for the interface shape to 
become unstable and develop a small-scale structure that is essentially independent to 
the overall heat flow. The surface tension plays a crucial role in this process, via 
Eq. (3), because it acts to stabilize the interface against short-wavelength pertur- 
bations. A planar interface, for example, first goes unstable at a characteristic 
wavelength which is approximately equal to the geometric mean &? of the 
capillary length d, and the thermal diffusion length 1 [4]. Typically d, is of the order 
of angstroms, I is of the order of centimeters, and the initial instability and the 
complex patterns that evolve from it are of the order of microns. 

The basic mechanism of the instability and the restabilization provided by the 
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surface tension are easy to understand. Consider the unstable steady-state situation 
shown in Fig. la, where a planar interface is advancing to the right. The interface and 
the solid behind it are at the melting temperature, U = 0, while the liquid far to the 
right is held at a temperature U = -1. The velocity of the interface is proportional to 
the steepness of the temperature profile in the adjacent liquid (Fig. lb). In the absence 
of surface tension, a small protrusion on the surface of the solid, as in Fig. lc, will 
grow faster than the surrounding plane interface because the temperature profile near 
it is steeper. Surface tension reduces the temperature at the tip of the protrusion 
below T,,,, as shown in Fig. Id, which flattens the temperature profile and also allows 
a flow of heat toward the interface in the solid. The greater the curvature, the more 
the velocity is reduced. In the absense of surface tension, the area within a depression 
in the solid, as in Fig. le, grows more slowly than the plane, and is left further and 
further behind. Here the effect of surface tension is to raise the interface temperature 
above T,, as shown in Fig. lf, thereby increasing the flow of heat away from the 
interface and accelerating the growth of solid there. 

There are a number of factors that make a numerical solution of Eqs. (l)-(3) 
challenging. Heat conduction with a moving boundary is difficult to handle, 
especially in two or more dimensions, even when the surface tension is ignored and 
there is no supercooling. Work on the numerical solution of such problems is an area 
of active research [5]. Additional difficulties are raised by the need to calculate the 
curvature, since the position of the interface must be determined accurately on a scale 
that is small compared to the thermal diffusion length. Furthermore, the coupling of 
the effect of the curvature to the temperature field requires that the features shown in 
Figs. lb-lf, including the discontinuity of slope at the interface, are adequately 
represented. 

Existing methods for the solution of the moving-boundary problem in the absence 
of surface tension may be grouped in two classes [6, 71. First are front-tracking 
methods, where the location of the interface is explicitly calculated at each time step. 
The differential equation (1) is solved separately in each single-phase region, and the 

FIG. 1. Illustration of the effect of surface tension on the interface temperature. Top: interface 
shapes and isotherms. The solid is growing into the supercooled liquid. Bottom: the corresponding 
temperature profiles along the x-axis. 
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boundary condition (2) is applied at the interface. Second are the single-domain 
methods, where Eqs. (1) and (2) are transformed to an equation which applies in the 
whole domain. In these methods, which are also known as the enthalpy or weak- 
formulation methods, the explicit location of the interface is not required in the 
calculation. The method used in this paper, described in detail in the next section, 
contains features of both approaches. It is based on a weak formulation of the 
problem over the whole domain, but because of the need to calculate the curvature 
and to approximate the temperature profile in fine detail near the interface, the 
position of the interface is explicitly represented. Results of the application of the 
method to a model problem are presented in Section III. In the final section, some 
limitations of the method are discussed, and plans for future work are indicated. 

II. METHOD 

The single-domain formulation of the moving boundary problem is obtained as 
follows. Both the diffusion equation (1) and the interface boundary condition (2) are 
consequences of the conservation of heat, and can be derived from an integral form of 
the conservation law which is valid over the entire domain of the problem. The 
equation involves the enthalpy function H defined as 

Hz ‘L”’ 
1 

liquid phase 
c,u- L, solid phase. (4) 

H is shown schematically in Fig. 2a. Solid lines indicate the branches of the curve 

---- 

(I.k-1) ’ 

FIG. 2. (a) Enthalpy vs temperature. Solid lines indicate the equilibrium phases, dashed lines the 
metastable ones. (b) Temperature profile in an interface cell with the interface parallel to the x-axis. (c) 
Construction to determine the extrapolation points x,, x2. The extension of the interface line into 
neighboring cells, dotted line, is used in determining the directional effective temperatures. (d) Enthalpy 
function determined by the piecewise linear temperature field for a typical interface cell. The cross- 
hatched parts of the normal H versus CJ lines are inaccessible. 
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correponding, to the equilibrium phases, and dotted lines indicate the metastable 
branches. In problems where superheating and supercooling do not occur, H is a 
single-valued function of U, and for computational convenience a segment of large 
slope joining the equilibrium solid and liquid branches is often introduced. Such a 
strategem is not possible here, and H must be treated as an explicit function of the 
phase as well as of U. 

The integral conservation law is 

I {Hn, - Q a n,) dS = 0, (5) 
.v 

where Y‘ is any closed surface in space-time, n, is the time component, n, is the 
space component of the unit outer normal (n,, n,) to 9, and Q is the heat current 
density. The diffusion equation (1) is recovered from (5) if one takes 9 to enclose a 
small volume which is entirely solid or liquid, integrates by parts, and then lets the 
volume shrink to zero. The boundary condition (2) is obtained if 9 is taken to 
enclose a small portion of the interface [8]. 

We now specialize to two spatial dimensions and introduce a uniform spatial grid 
with xj+r -xj=Ax= yk+, - yk and a uniform grid in time with t, + r - t, = At. A 
grid point ok) is regarded as lying in the center of the square grid cell with 
Ix - xi1 & ! Ax and 1 y - y, I& 4 Ax. Except for the phase function Pjk, functions on 
the spatial grid are defined as averages of the continuous function over a cell. Thus 
H$ represents H evaluated at the nth time step and averaged over the jkth cell. The 
phase P$ is defined to be solid or liquid if thejkth cell contains only that one phase 
at t=t,, and to be interface if the cell contains both phases. The treatment of the 
interface cells is described in detail below. 

The discrete form of the conservation law is obtained by applying (5) to the 
surface of the cube whose top and bottom are the jkth cell at times t,+ , and t,. The 
contribution to the integral of the top and bottom is simply (Ax)*(H$” -H&k>. The 
integrals at the sides are taken to be averages of the integrals along the edges at each 
time step. For example, the integral over the surface at x = xi + 4 Ax is given by 
f At(Qf:“,~:,k + Q,“;‘,, 2,k), where 

The conservation law can now be written 

H!‘+‘=H’! +F” +F?+’ 
Jk Jk jk Jk ’ 

At F;=-- 
Wx) 

(Qi”;“l,z,k - @?,,,k + Q;;F+,,2 - Qj’:k”-,,2). 

(7) 

The terms of Eq. (8) are simple to evaluate when the cell jk and its neighbors are all 



SHAPE INSTABILITY IN SOLIDIFICATION 117 

either solid or liquid. In this case the finite difference approximation to Q = -K VU 
gives, for example, 

Q ZbLk = -f&k + K;+ I,k)(U;+ I,k - qk)* (9) 

Equation (7) is a nonlinear system which is to be solved for Hyk+‘, and, implicitly, 
qk” and Pykt ‘, in terms of the values given at t,. 

The treatment of the interface cells will now be described. The basic idea is to 
approximate the temperature within an interface cell by a piecewise linear function, in 
the spirit of the finite-element method. The interface within the cell jk is approximated 
by a line segment having slope m and intercept b with respect to local coordinates 
X, j which are scaled so that the boundaries of the cell are R = *tf , 7 = *j. The 
temperature profile over the interface cell is approximated by two linear pieces, 
continuous at the interface line. Thus for the interface line jr= ml + b, the 
temperature in the cell has the form 

U,+a>(mff+b-71, y>ti-tb 
U,+a<(mY+b-T), y<mR+b, (10) 

where U, is the temperature at the interface line. For clarity of exposition, all 
examples will use this representation. In practice, cells with interface lines that would 
have 1 m 1 > 1 in this form are treated to a local coordinate transformation 2 * jL 

The coefficients a> for the upper U-plane and a< for the lower are fixed by the 
requirement that these planes intersect certain points determined by extrapolation 
from the temperatures of neighboring cells. Consider the cross section of the 
temperature profile shown in Fig. 2b, for a case where the interface is parallel to the 
x-axis (m = 0). Here each U-plane is drawn so that its extension into the neighboring 
cell has the temperature Uj,k* , at the center. For the more general case, where m # 0, 
the extrapolation points x, and x2 are given by the intersection of the line perpen- 
dicular to the interface that passes through the center of the cell, with the lines 
2 = f 1, 7 = f 1 that connect the eight grid points nearest to the cell, as shown in 
Fig. 2c. For /ml < 1, these points are (-m, 1) and (m, -1) in the local coordinates. 
The temperatures at these points are determined by linear extrapolation from the two 
nearest grid points. 

The slope of the interface line is set equal to the slope of the line connecting the 
midpoints of the two nearest interface lines on either side. The position of the 
interface line within the cell is not directly fixed by the neighbors, however. Rather, 
the value of the intercept b is determined by the solution to the conservation law (7) 
for the cell. This is discussed in detail below. Once b is known, the curvature X of 
the interface is calculated by finding the circle which passes through the midpoints of 
the interface line and its two nearest neighbors. The magnitude of X’ is equal to the 
inverse of the radius of the circle, and its sign is determined from the location of the 
center of the circle according to the rule given in the introduction. The interface 
temperature is then given by Eq. (3). 
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The remaining quantities needed in the calculation are determined by the 
temperature profile. An expression for the enthalpy Hjk in terms of m, b, a<, and u’ 
is obtained by integrating Eq. (4), with U given by Eq. (lo), over the cell. The heat 
flux terms in Eq. (8) could be obtained directly from their definitions, Eq. (6), etc., in 
the same way. However, a simpler approximation is used here: each interface cell is 
assigned a direction-dependent effective temperature, obtained from Eq. (10) by 
setting 2 = J = 0. Whether the value for the upper or lower region is used depends on 
the location of the interface line. In the situation depicted in Fig. 2c, for example, the 
neighboring grid points j - 1, k and j, k + 1 lie above the extension of the interface 
line, so the temperature derived from the upper U-plane of thejk cell is used for those 
directions. The heat fluxes are then given by Eq. (9), etc., with the appropriate direc- 
tional temperature substituted for U&. 

The conservation law (7) together with the relations just described for the interface 
cell quantities form a complicated system which is solved by iteration. During a 
sweep through the grid, all quantities are recalculated for each cell on the basis of the 
current neighboring cell values, except for the slopes m and temperatures U, of the 
interface lines; these are recalculated separately after each complete iteration cycle. 
Consider now the jkth cell during an iteration cycle. All quantities at the last time 
step are known, all quantities involving neighboring cells at the current time step are 
considered known (some of these are values calculated during the present iteration, 
others during the previous one), and if the jkth cell was an interface cell during the 
last iteration, the slope and temperature of the interface line are known. The task is to 
solve for Hjk, Ujk, and Pjk; if Pjk = interface, this requires solving for the position b 
of the interface line. 

For simplicity, the following discussion assumes that the thermal conductivities of 
solid and liquid are identical. There is no essential change when K, # KL, but then a 
number of different cases depending on the phases of the cell and its neighbors via 
Eq. (9), etc., must be specified. Let P and U be the values of the phase and 
temperature to be found for the cell jk in the present iteration. For an interface cell, 
the temperature is U = Us + U,, where Us and U, are the results of integrating the 
U-profile over the parts of the cell that are solid and liquid, respectively; they are 
functions of the unknown interface position b. Let A, be the fraction of the area of an 
interface cell that is occupied by solid. Now the conservation law (7) can be written 

C,U-L=G-oU, if P = solid (114 

C,U,+C,U,-LA,=G-o(U,+U,), if P = interface (1 lb) 

C,U=G-oU, if P = liquid, (1 lc) 

where G is the sum of all terms on the right-hand side of (7) that do not explicitly 
contain U = qk+ ‘, and u is K(dt)(d~)-~. Equations (1 la) and (1 lc) can be solved for 
U immediately, but (1 lb) is a nonlinear equation for 6. Of course, the phase P 
remains to be determined. 

It is important to note here that the interface is not constrained to be continuous 
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from one cell to next, nor is there required to be an interface cell separating solid and 
liquid cells. However, there is an essential constraint on the phase of a cell: for a cell 
to be an interface cell it is required that at least one of its nearest neighbors be solid 
and at least one be liquid. This neighboring-cell condition is the simplest way of 
implementing the physical requirement for heterogeneous nucleation-i.e., solid forms 
only on preexisting solid-without which the persistence of the metastable phases 
would be impossible. 

The solution of Eqs. (11) depends first of all on the phase of the cell at the last 
iteration and on the current phases of its neighbors. If the cell was solid or liquid at 
the last iteration and it does not satisfy the neighboring-cell requirement for an 
interface cell, then the phase remains unchanged and Eq. (1 la) or (1 lc) is solved for 
U. The new temperature of the cell is then taken to be 

u’=$7w+ (I-9) u’-‘, (12) 

where v’-’ is the value of the temperature of the cell at the previous iteration and Q 
is an overrelaxation parameter. If the cell does satisfy the neighboring-cell 
requirement, or if it was an interface cell at the last iteration, the new phase and 
temperature are determined from Eqs. (11) as follows. 

Figure 2d shows the three branches of H (solid, interface, and liquid) as they 
appear on the left-hand sides of Eqs. (11). Let b, be the value of b for which A, = 1, 
and b, the value for which A, = 0. Clearly, if G is large enough so that G - aU is 
greater than the maximum value H, of the interface branch for all values of b, then 
the phase of the cell is liquid and the temperature is obtained from Eq. (1 lc). 
Likewise if G is sufficiently small, the phase is solid. Let us define 

W(b) = (c, + 6) Us + (c, + 0) U, -LA, - G (13) 

so that the equation W(b) = 0 is equivalent to Eq. (1 lb). Then the solution of the 
conservation law is P = solid and v’ = (G + L)/(c, + cr) if W(b,) > 0, P = liquid and 
Vi = G/(c, + a) if W(b,) < 0, and P = interface with b determined by W(b) = 0 
otherwise. It should be noted that if P is interface, the solution to W(b) = 0 is 
guaranteed to be in the range min(b,, bJ < b < max(b,, bL). 

In summary, the overall structure of the calculation is as follows. Starting with 
complete information about the nth time step, one sweeps through the grid, solving 
the conservation law for Pi and u’ at the (n + 1)st time step for each cell, and for b 
for each interface cell. At the end of each iteration, the slopes m and the temperatures 
U, for each interface cell are recalculated. The process is then repeated until the 
convergence criterion max 1 U’ - u’-’ I< E is satisfied. 

III. RESULTS 

Figure 3 shows the development of an interface pattern that mimics dendritic 
growth. In this example, the calculation is started from a single grid-cell seed of solid 
at U = 0 in a background of uniformly supercooled. liquid at U = - 1. The fourfold 
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FIG. 3. Dendrite-like growth developed from a single grid-cell seed of solid in a background of 
uniformly supercooled liquid. The interface curve is shown at equal time intervals. The fourfold 
symmetry of the pattern is determined by a grid-dependent effect of the initial seeding. 

symmetry of this pattern is determined by the grid, because of the initial seeding. 
With larger values of the surface tension, however, the four-armed shape that 
develops from the same initial seeding quickly restabilizes and grows as a circle. 

To test the method quantitatively, I have applied it to a simple problem where the 
results can be compared with an approximate analytical solution. The problem is the 
two-dimensional growth and stability of a cylinder of solid with radius R surrounded 
by supercooled liquid in a cylindrical container with fixed temperature U = -1 at the 
wall. The radius of the container is R,. For simplicity, it is assumed that 
K, = KL = K and C, = CL = C. We wish to solve for the velocity at which the radius 
of the cylindrical solid grows and for the exponential amplification rate of small 
perturbations. For the conditions we consider, the interface moves very little in the 
time required for relaxation of the temperature field, and the time derivative can be 
dropped from Eq. (1). In this quasistationary approximation, the growth velocity of 
the circular cylinder of radius R, is found to be 

KU - WJ 
’ = LR, ln(RJR,) 

and the temperature field to be 

U(r) = 
I 

--T/R, + a In(r/R,), r>R, 
-r/&j, r<&,, (15) 

where a = (T/R, - l)/ln(R,/R,). 
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Column I of Table I gives the results of the numerical calculations of the radial 
velocity of a circular interface. The calculations are done on a square grid with np 
grid points on a side. The length of the side of the square is taken to be unity, so the 
grid spacing Ax is (np - 1))‘. To approximate an outer boundary circle with 
R, = 0.5, grid points at a distance 0.5 or greater from the center are held at the 
temperature U, = -1. All the calculations of Table I were done with C, = C, = 
K,. = K, = 1 and L = 2. The calculations of column I used r = 0.01. Figure 4 shows 
the interface at time intervals of 0.005, starting with R, = 0.15, for the calculation 
with nD = 61. The velocity is obtained by a least-squares fit of the mean radius vs 
time over the interval t = 0.005 to 0.025. The calculated values are in excellent 
agreement with the predicted velocity in the quasistationary approximation, Eq. (14), 
which is nearly constant at 2.57 for R, in that range. The consistency of the 
calculation even for the coarsest grid used is impressive. Also noteworthy is the 
degree to which circularity is maintained, as seen in Fig. 4; the deviation from the 
mean radius is always less than 0.3% in this example. The applicability of the 
quasistationary approximation here is verified by the observation that the calculated 
temperature field is essentially indistinguishable from Eq. (15) at the same R,. 

Because Eqs. (7) and (8) provide a fully implicit solution of the heat diffusion 
problem in the absence of the special approximation for the temperature profile of the 
interface cells [9], it was hoped that in spite of the nonlinearities in the problem, the 
procedure developed here would likewise be free of the well-known limitation of 
explicit methods to time steps proportional to the square of the grid spacing. It was 
found, however, that large time steps sometimes led to convergence problems and 
obviously erroneous results, so the calculations reported here were done with time 
steps smaller than $(Ax)‘, as indicated in Table I. Typically 10 to 15 iterations are 

TABLE I 

Calculated Velocity o of Circular Growth and Amplification Rates W, of the 
Perturbation are Compared with the Predictions of the Quasistationary Approximation 

I II III IV V VI 

% At V w2 02 w3 W4 W4 

21 1.0 x 10-3 2.62 10.2 11.1 
31 5.0 x 1o-4 2.58 10.9 13.8 
41 2.5 x 1O-4 2.54 10.2 13.9 
61 1.25 x 1O-4 2.54 9.8 12.6 

Quasistationary 2.57 9.5 9.5 19.8 30.6 30.6 

r 
R, range 

47 

0.01 0.005 0.005 
0.15-0.2 1 0.20-0.26 0.20-0.26 

- 0 n/4 

22.4 - 
21.8 26.4 33.2 
21.1 33.0 30.3 
20.3 33.6 26.2 

0.002 0.00 1 0.001 
0.23-0.29 0.23-0.29 0.23-0.29 

0 0 rr/4 

Note. Values of n,, At, r, R,, and 0, used in each calculation are also shown. 
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FIG. 4. Interface surve at equal time intervals showing the growth of the solid (interior) 
circular mode. 

in the stable 

required for convergence. For ‘2, = 61, one time step takes approximately 6 set of 
DEC-2060 CPU time. 

A solution can also be obtained in the quasistationary approximation for surfaces 
of the form 

R(t) = R,(t) + A,ewm’ cos(m(0 - 0,)) (16) 

with m = 2, 3, 4 ,... . To first order in the perturbation, the exponential growth rate is 

Urn= 
(m - 1)v 

&I 

1- 2KIh(m+ 1) 
vLR; I 

(17) 

and the temperature field is 

U(r, 8, t) = 

r < R(t), 

where a is the same as in Eq. (15) and fi = Z(m2 - 1)/R:. 
The numerical calculations were done using Eqs. (16) and (18) for the initial state 

at t = 0. Columns II-VI of Table I give the results for calculations of (I),,, for 
m = 2,3, and 4. Values of r were chosen for each M so that the quasistationary 
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FIG. 5. Interface curve at equal time intervals starting from a perturbed circle 
8, = 0. 

with m = 2 and 

FIG. 6. Same as Fig. 5 but with the long axis of the initial curve oriented at 45’ to the grid axes. 

581/39/l-9 
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FIG. 7. Interface curve at equal time intervals for the m = 3 perturbation. A distortion of the shape 
due to direction-dependent effects of the grid is visible at the later times. 

approximation for o, is nearly constant over the range of R, used. The growth rates 
were obtained by fitting the calculated interface positions to a curve of the form (16) 
and then fitting the amplitudes to an exponential function in time. The calculations in 
columns II and III for m = 2 and columns V and VI for m = 4 differ only in the 
parameter 8,, which gives the orientation of the perturbation with respect to the grid. 
Figures 5 and 6 show the interface curve at time intervals of 0.005 for the 8, = 0 and 
6, = n/4 cases, respectively. In all cases an initial amplitude of 10% R, is used. 
Calculations done with initial amplitudes of 5-159/o show a scatter of about 10% in 
each o,, with no observable amplitude dependence. 

Most of the computed w, agree with the quasistationary approximation within 
their estimated accuracy of about 10%. The values calculated for these small- 
amplitude quantities are not expected to be as good as for the growth velocity of the 
unperturbed circle, of course. The results are also more sensitive to directional effects 
of the grid, as shown by the dependence on the angle 8,, and by the slight distortion 
in the shape of the m = 3 interface seen in Fig. 7. This is discussed in the next 
section. 

IV. DISCUSSION 

This paper reports a new method for studying shape instabilities in solidification 
by direct numerical solution of the moving boundary problem. The results are in 
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excellent agreement with the predictions of the quasistationary approximation for a 
model problem. The basic idea of the method is the approximation of the temperature 
field in an interface cell by a piecewise linear function, in the spirit of the finite- 
element technique. The following discussion points out areas of difficulty with the 
present implementation of the idea and indicates some possible directions for future 
work. 

There are a number of obvious changes that could be made to improve the speed 
and accuracy of the present program. For example, the local curvature is now 
calculated using only three points to define a circular arc. When an interface line 
segment is nearly horizontal or nearly vertical and intersects two adjacent edges of 
the cell, the location of its midpoint can change very rapidly with small changes in b, 
which leads in turn to large changes in the curvature and sometimes prevents 
convergence. To handle this, the curvature calculated for each interface cell at the end 
of an iteration is averaged with the previous values, and furthermore the value of the 
curvature is frozen after a number of iterations. This ad hoc procedure is roughly 
satisfactory because the curvature in fact would change very little during a time step 
if not for such artifacts of the calculation. A better solution would be to obtain the 
curvature by local fitting of a smooth curve to the interface using more than three 
points. 

Another convergence difficulty appears when the interface line is roughly at 45” to 
the grid axes and very close to the corner of a cell. In this situation, the W function, 
Eq. (13), may be nearly independent of b locally, so that relatively large changes in b 
occur in successive iteration steps. The result can be a phase oscillation in which, for 
example, a cell alternates between being interface with A, = 0.98 and being solid. The 
changes in the enthalpy and the temperature of the cell are very small, but the 
calculation of the curvature and the heat fluxes of the neighboring cells may be 
affected enough to prevent convergence. In the present program, this has been 
handled simply by cutting off all phase changes after a certain number of iterations 
within a time step. It has recently been learned [lo] that the phase oscillations and 
the need for such a cutoff are eliminated if the heat fluxes are calculated by 
integration of the temperature profile of the cell, as mentioned in the third paragraph 
following Eq. (10). 

It is crucial to the study of solidification patterns that the numerical method not 
introduce a directional bias, since the shape instability is inherently very sensitive to 
small differences in the interface position. The present program does remarkably well 
in maintaining an accurately circular shape when that is the stable mode. However, 
there is a small but significant directional bias in the grid, as shown by the approx- 
imately f 10% dependence of the m = 2 and m = 4 amplification rates on B,,. The 
major source of the directional effect is easy to identify: the nearest-neighbor 
conditions for an interface cell make it impossible for portions of the interface curve 
that are not parallel to the grid axes always to be represented as a continuous 
sequence of line segments. This is especially true when the interface runs at approx- 
imately 45’ to the grid, as can be seen in Fig. 4, for example. Preliminary work 
indicates that it is possible to solve this problem by generalizing the neighboring-cell 
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conditions so that a continuous interface is maintained at all angles [lo]. The new 
condition allows cells with next-nearest neighbors of liquid and solid to be interface 
cells also, provided that they have two adjacent nearest-neighbor interface cells with 
interface lines at appropriate positions and orientations. The latter requirement 
appears to be necessary to make the choice of interface cells unique and independent 
of the iteration process. 

The present version of the program has not been optimized for speed, and there are 
opportunities for considerable improvement by straightforward programming 
changes. However, the limitation to time steps proportional to (Ax)’ appears to be a 
more fundamental problem. Perhaps the limitation can be eliminated by the 
improvements in the curvature and the neighboring-cell conditions mentioned above, 
or by changes in the iteration procedure. It is possible, on the other hand, that the 
basic time integration scheme, which is unconditionally stable for linear problems, 
could have intrinsic instabilities in this nonlinear problem. I suspect, however, that 
the small time-step requirement is due to the procedure which allows the interface 
position in each cell to be adjusted independently. The other problems discussed here 
also stem basically from the potential lack of continuity of the interface from cell to 
cell. For example, the need for cell-based nucleation conditions would disappear if the 
interface were guaranteed to be continuous at all times. 

It is attractive, therefore, to propose to construct a method in which both the 
interface and the temperature field throughout the domain are approximated by 
continuous piecewise polynomials, as a natural extension of the finite-element idea in 
the moving boundary problem. Because of the role of the curvature in the instability 
problem, higher-order elements with curved boundaries at the interface might have a 
special advantage over linear elements. If the interface position were adjusted in a 
locally concerted way, rather than one mesh point or one element at a time, the short 
time-step limitation might be circumvented. Finally, this complete finite-element 
approach would probably be more susceptible than the present method to analysis 
and proof of convergence properties. 
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